Manifold Alignment
نویسندگان
چکیده
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملGeneralized Unsupervised Manifold Alignment
In this paper, we propose a Generalized Unsupervised Manifold Alignment (GUMA) method to build the connections between different but correlated datasets without any known correspondences. Based on the assumption that datasets of the same theme usually have similar manifold structures, GUMA is formulated into an explicit integer optimization problem considering the structure matching and preserv...
متن کاملMultiscale Manifold Alignment
We introduce a novel approach to multiscale manifold alignment. Our approach goes beyond the previously studied approaches in that it yields a hierarchical alignment that preserves the local geometry of each manifold and matches the corresponding instances across manifolds at different temporal and spatial scales. The proposed approach is nonparametric, data-driven, and automatically generates ...
متن کاملDEMING ZHAI et al.: MANIFOLD ALIGNMENT VIA CORRESPONDING PROJECTIONS 1 Manifold Alignment via Corresponding Projections
In this paper, we propose a novel manifold alignment method by learning the underlying common manifold with supervision of corresponding data pairs from different observation sets. Different from the previous algorithms of semi-supervised manifold alignment, our method learns the explicit corresponding projections from each original observation space to the common embedding space everywhere. Be...
متن کاملManifold Alignment without Correspondence
Manifold alignment has been found to be useful in many areas of machine learning and data mining. In this paper we introduce a novel manifold alignment approach, which differs from “semisupervised alignment” and “Procrustes alignment” in that it does not require predetermining correspondences. Our approach learns a projection that maps data instances (from two different spaces) to a lower dimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011